e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

ETHER I024 TCP

The Ether 1024 TCP (Originally named the Ether I024 PIC R) is an integrated,
micro-controller based network interface board with 24 digital user I/O lines. The
module’s firmware and hardware enable your devices or other modules to be
connected to a generic Ethernet network and controlled using commands sent over
the network via either TCP or UDP.

Each of the 24 User I/0 lines operates at 5V DC maximum 1levels and can be
independently programmed as an Input whose state can be remotely sensed via
another network device, an Input whose state is internally checked and transmitted
when a change occurs, or an Output whose state can be remotely controlled by
another networked device.

Module Features

e On-board Web Interface to configure and control the board

e Supports TCP and UDP Commands, ARP, BOOTP, DHCP, ICMP, HTTP

e Each Port is capable of SPI and I2C Communication

e Industry standard 1@0BaseT Ethernet Interface with an industry standard
RJ-45 Connector

e 24 independently programmable signal lines with programmable pull-ups
per line

e Advanced configuration allows the modules to automatically scan the
input ports and transmit changes directly to another ETHER I/0 24 module
without host connection or to any Internet Port by router connection

e On board EEPROM allows all ports to power up in a user programmable
state

e Programmable Fixed IP or Dynamic IP assignment from a DHCP server

e Can be connected to a wireless network gateway or access point for
wireless operation

e Easy connection to the I/0 port via a 10-way box header that suits a
standard IDC connector.

e 72mm Standard width for DIN Rail Modules

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Layout and Mechanicals

30.6 mm
53.45 mm

72 mm

20
1]

I
) & o -
A

Il holes
3.5mm dia
72 mm
TOP VIEW
75.5 mm
| N | HE —

S
IS
3

E E 72.0 mm —

q:@

R SIDE VIEW

Dimensions: 2.8 X 2.8 X 0.55 inches (72 X 72 X 14mm)

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Pinouts and Board Connections

I/0 PORT CONNECTIONS (10 PIN BOX HEADER)

Shown in the diagram below is the I/0 port Connector for each of the Ports
on the module.

I/O 24 Port Connection

> +sv ([l @ 107
706 © @ o5
104 @ © 103
102/© @ o1
/00 @ @) 6ND

Note: Pin1 Marked on I/O Accessory with b

I024 BOX HEADER CONNECTIONS

PIN # SIGNAL TYPE DESCRIPTION

1 +5V PWR +3.3V to +5V drawn from I/0 module powers
(Supplies power to the connected I/0 Board)

2 I/0 7 I/0 Input / Output pin 7

3 I/0 6 I/0 Input / Output pin 6

4 I/0 5 I/0 Input / Output pin 5

5 I/0 4 I/0 Input / Output pin 4

6 I/0 3 I/0 Input / Output pin 3

7 I/0 2 I/0 Input / Output pin 2

8 I/0 1 I/0 Input / Output pin 1

9 I/0 © I/0 Input / Output pin ©

10 GND PWR Ground signal from I/0 module

CONFIGURATION JUMPER CONNECTIONS (J1 - 3J4)

The CONFIG connector is an 8 pin arranged as 2 rows of 4 pins. To set an
option jumper place one of the two supplied links across the columns next
to the corresponding label on the circuit board overlay. Below is the
jumper configuration with J1 set.

JA 3B 32 A
N EE N
LD

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

The table below outlines the jumper configurations

J1 ON - Lock EEPROM
OFF - Allow EEPROM writes
J2 ON - Unit will DHCP for IP address, and all

EEPROM values will be ignored this includes
power up settings and any fixed IP programmed
into the unit.

OFF - Load all values from EEPROM, unit will
load IP address if programmed or else it will

DHCP

J3 Fixed IP address 10.10.10.10 given to unit and
port number defaults to 2424

Jja Fixed IP address 192.168.1.10 given to unit

and port number defaults to 2424

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

POWER CONNECTORS

The Module has a 2.1mm DC jack that is configured as Positive Centre pin
with ground sleeve. The DC Jack is mounted overhanging the board’s edge in
order that the module can be mounted with the network connector and power
connector protruding through a case.

There is an additional screw terminal connection that allows for the 5v
supply from the onboard regulator to be used to power user circuits and
sensors. The maximum current that user circuits may draw from the on
board regulator is 500mA; if this current is exceeded then the operation
of the board may be adversely affected.

ETHERNET CONNECTOR
The module is equipped with a standard RJ45 network socket and conforms to
the 10 Base-T standard. Only 4 of the 8 wires are used for network

interface, 2 as a pair for data sent from the module and 2 as a pair for
data being received by the module the other wires are unused at this time.

Ethernet Connector

PIN # NAME DESCRIPTION
1 TXD + | Transmit Data Positive Signal
2 TXD - | Transmit Data Minus Signal
3 RXD + | Receive Data Positive Signal
6 RXD - | Receive Data Minus Signal

PROGRAMMING HEADER FOR FACTORY PROGRAMMING (ICD HEADER)

This header is used for factory programming, DO NOT USE this connector for
any other purpose.

LED Indicators (Network Link/ACT and Valid Command)

There are 2 LED indicator lights on the Ether 1024 TCP module; their
operation is as follows.

UPPER LED = NETWORK LINK/ACTIVITY. This LED is illuminated when the
module is powered and the network interface has detected a
connection. The LED will blink whenever there is activity on
the network link.

LOWER LED = VALID COMMAND. This LED illuminates when the board is powered
and will turn off each time the unit processes a valid command.
When the commands are arriving faster than 10 times per second
the LED will be appear to be switched off.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q eTHER 1024 TP paTASHEET [N

electronic solutions

Java Programming Interface

The Ether I024 TCP has an on board web interface that is used to configure
all options for the module. This interface can be accessed via any java
enabled web browser. The following section describes all features
incorporated in the interface.

MODULE CONFIGURATION AND POWER UP SETTINGS USING THE WEB INTERFACE

Log-in Tab

l/ Log-in rTes‘t Controls rPower-up Options r AutoScan r Port/Static IP/Timeout

Elexol Ether 1024 Pro Java Applet Version: 0.01
Firmware Version: 0.11
Mac Address: 00:11:BA:00:00:00
Elexol Pty Ltd 2008

Log-in / Change Password

— d| New P d
er Passwor
Confirm Password

Custom LCD Display
Line 1
Line 2

Reboot || Refresh

Log-in / Change Password

Enter Password to log-in. Factory default is a blank password. Once
logged in, you can change the password.

Custom LCD Display (Only Applicable for Ether I024 PRO)

Use these fields to set a custom message on the upper, lower or both lines
on the optional LCD display. To remove a custom message, simply enter a
blank line.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Test Controls

Log-in | TestControls | Power-up Options | AutoScan | Port/Static IPTimeout

[Value | Direction | PullUp |
7 i} 5 4 3 2 1 0 Hex
pota| o | o [o [o o] o | 1] o |n
oo 0 | o | 0 | o o] o] 1ol
ponc o o | o | o] o] o] 1ol
0=0v 1=5v [_] Auto Read Values
Reboot || Refresh

Value

The port value is written to or read from the entire port with each of the
value bits affecting the corresponding I/0 line. The Auto read values
check box when checked will constantly read Port A, B, C (poll) on the
device to see if the pin has changed.

Direction

The Direction value of the port can be set as either input or output.
When set as output, the I/0 line will be driven to the last value written
to the port. This value can be pre set by writing to the port before
writing to the direction register.

Pull Up

The Pull Up configuration applies to those lines that are set as inputs,
writing a 1 to the corresponding bit applies a pull up resistor to the
line so that if it is not driven low it will be pulled to a known high
state, this is very useful if sensing contact closures or open collector
outputs

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q eTHER 1024 TP pATASHEET [N

electronic solutions

Power-up Options

The settings under the Power-up Options Tab relate to the various Port
Modes of each of the Ports.

r Log-in |/Test Controls |/Puwer-up Options r AutoScan |/ Port/Static IP/Timeout

[PortMode | Value | Direction | PullUp | SPI
Enable Power Up Settings
Port A Port B Port C
@ 10 Mode @ 10 Mode @ 10 Mode
2 SPIMode = () SPIMode _) SPI Mode
2 12CMode) 12C Mode) 12C Mode
Rehoot ” Refresh

Enable Power-Up Settings

Uncheck this box if you want to disable the power-up settings. This will
set default values for all the settings of the unit on power-up.

Port Modes
Sets the Port modes for each port. These modes include:

e 10 Mode
This mode sets the Port to a standard Input/output port.

e SPI Mode
This mode configures the Port to transmit and receive SPI data from
a connected SPI peripheral device.

e I°C Mode (Pronounced “I-squared-C”)
This mode configures the Port to transmit and receive I°C data from a

connected I’C peripheral device.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q eTHER 1024 TP paTASHEET [N

electronic solutions

Value, Direction and Pull-Up

[Log-in | Test Controls | Power-up Options | AutoScan | Port/Static IPTimeout
[Port Mode | Value | Direction | Pull-Up | SPI

7 6 5 4 3 2 1 0 Hex

pota| 0 [o | o | o] of o o] o [of

Pt | 0 | o | o [[o o [o oo |o

potc| 0 | o [o oo f o of] o o
0=ov 1=5v

Rehoot Refresh

The module can be programmed to power up with all its ports to the pre-
programmed state, thus if a machine needs to have certain devices enabled
at power up or if the machine designer desires all lamps to light in a
lamp test, it is possible for the module to accomplish this before the
main control system is active. Listed below are the various settings that
can be programmed for power up. Descriptions for these settings value,
direction and pullup have been outlined in previous paragraphs of the
manual.

SPI

[Log-in | TestControls | Power-up Options | AutoScan | PortStatic IP/Timeout
[Port Mode | Value | Direction | Pullup | SPI

Port A Port B Port C

) Mode 0) Mode 0) Mode 0
Z Mode 1) Mode 1) Mode 1
& Mode 2 ® Mode 2 & Mode 2
) Mode 3) Mode 3) Mode 3

Rehoot ” Refresh

Set the SPI Mode of the Port to either of modes © to 3. These setting
will only take effect if the respective port is set to SPI Mode.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

AutoScan

r Log-in rTest Controls rPuwer-up Options r AutoScan r Port/Static IP/Timeout

Protocol Scan Rate and Filtering IP Address Target Port
Scan Period Filter Count
sl 1]seans |18 T8 ponfziz

Bit Test Enables

T 6 5 4 3 2 1 0 Hex
porta| 0 || o |l o | o o of oo o
SLIIEN RN RN N N N N N
potc | 0 |l o Jlo [l of of of of oo

0 = Mask Off 1=Mask On

Rehoot ” Refresh

The AutoScan mode will allow the module to originate communication with a
remote device or another Ether 1024 module. This mode is very useful as
it allows your software the freedom not to have to poll the module to
check the state of the inputs

Protocol
Enables AutoScan and sets the Protocol to either UDP or TCP.
Scan Rate and Filtering

The Scan Rate is a 16-bit value which is used to divide the scan rate of
the AutoScan mode from its base rate of 50 scans per second down to a user
programmed rate from 25 scans per second to one scan per 54 minutes. When
set at 1 the scan rate is 50 scans per second, it is 25 scans per second
when the value is 2 and so on.

The filter value is used to count the number of identical reads that are
required before a port value is considered valid and sent to the target
device. When set at @ the filter is turned off, when set at 1 the port
must read the same for two scans to be considered valid and sent to the
target. Higher numbers simply increase the number of identical reads
required before the value is considered valid.

Care should be taken when using high filter values with slow scan rates,
as the reporting time for a change under these conditions can be over 4
hours.

Target IP Address and Port Number

A Target IP Address and Port Number are provided to tell the Ether 1024
module what destination address the AutoScan data has to be sent too.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Bit Test Enables

Mask bits are used to allow some of the input pins to toggle without
generating messages from the module. Any input whose corresponding mask
bit is low, is ignored by the AutoScan function.

Port / Static IP / Timeout

[Log-in | TestControls | Power-up Options | AutoScan | Port/Static IP/Timeout |_

TCP Server Timeout

Timeout (Secs) |10

Command Port

Port|2424

Enable Static IP Address
IP Address

[l

Subnet Mask

9. 0. 9.

Default Gateway

R

Rehoot ” Refresh

TCP Server Timeout

Use this field to set the time (seconds), of inactivity on a TCP
connection before the TCP Server closes the connection.

Command Port

Use this field to set the Command Port number. This number is the port
that the unit will use to listen for UDP and TCP connections. The default
port number is 2424,

Enable Static IP Address

Checking this box will disable the DHCP Client and assign the Unit with
the Static IP Address, Subnet Mask and Default Gateway as specified in the
fields below it.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Command Interface (Via TCP and UDP Packets)

The functions of the module are controlled by a command set that is sent
via TCP or UDP packets. These TCP and UDP packets can be sent out from the
PC via application software or from other Ether I024 module if using
AutoScan.

This section will cover in detail the command summary followed by the
Command set used by the Ether 1024 TCP module.

Command Summary

The commands are displayed as followed:

e All commands are shown as ASCII characters, text in 1italics represent
binary 1 byte values.

e Values that pertain to port Input, Output or control are shown as
data,

e Values that pertain to address information are shown as address

o Where a specific byte requires its hexadecimal value it is shown as
follows e.g. Ox55.

e The spaces shown are only for clarity and no actual spaces are used in
commands sent to the module.

e The I/O0 lines are accessed as 3 ports and each line is controlled by
its bit value within the data byte.

MODULE PORT CONFIGURATION

Each of the ports on the Ether 1024 TCP will need to be configured for the
appropriate port mode configuration before sending commands to the unit.
Care needs to be taken as different modes can affect the direction
registers of the ports. The port mode can be set to either

e 10 Mode
This mode sets the Port to a standard Input/output port.

e SPI Mode
This mode configures the Port to transmit and receive SPI data from

a connected SPI peripheral device.

e I°C Mode (Pronounced “I-squared-C”)
This mode configures the Port to transmit and receive I°C data from a

connected I’C peripheral device.

The port mode can be changed via the web interface or by writing to the
port mode EEPROM values for the configuration required. The default
setting for the board will be IO MODE unless changed by the user.

I 2015 clexol Pty Ltd o Revision 1.3

e

elexol

electronic solutions

Q

ETHER I024 TCP DATASHEET

Command Quick Reference

Table 1, Module Command Set

Command Command Bvtes Function Response Response Response
ASCII Hex y Bytes Identifier Data
6 Byte MAC
0x49 Ox4F Identify Address
1024 0x32 0x34 4) 1024 Units 12 1024 2 Byte Firmware
Version
A ox41 2 Port Value Write Port A -
B ox42 2 Port Value Write Port B - - -
C ox43 2 Port Value Write Port C - - -
a ox61 1 - Read Port A 2 A Port A Value
b 0x62 1 - Read Port B 2 B Port B Value
C ox63 1 - Read Port C 2 C Port C Value
1A ex21 ox41 | 3 Direction Write Port A - : .
Direction Register
B ex21 ox42 | 3 Direction Write Port B - : .
Direction Register
Ic ox21 exa3 | 3 Direction Write port € - - -
Direction Register
la ox21 ox61 | 2 - _ Read Port A 3 1A Direction
Direction Register
b ox21 ox62 | 2 - _ Read Port B 3 B Direction
Direction Register
lc 0x21 0x63 2 - . Reag Port F 3 IC Direction
Direction Register
o Write Port A
%A ox25 ox41 3 Pull-Up pull Up Registerl
o Write Port B
%B 0x25 0x42 3 Pull-Up pull Up Registerl
o Write Port C
%C 0x25 0x43 3 Pull-Up pull Up Registerl
o Read Port A o
%a 0x25 0x61 2 - pull Up Registerl 3 %A Pull-Up
o Read Port B o
%b 0x25 0x62 2 - pull Up Registerl 3 %B Pull-Up
o Read Port C o
%C 0x25 0x63 2 - pull Up Register! 3 %C Pull-Up
H ox48 2 Pin Number Raise IO Pin - - -
L ox4C 2 Pin Number Lower IO Pin - - -
See Serial
S Communication
Section below
‘r 0x27 0x72 4 AddMSB AddLSB Read EEPROM Byte 4 r AddMSDBatzddLSB
‘w 0x27 Ox77 5 AddMSDBatA;ddLSB Write EEPROM Byte - - -
‘@ 0x27 0x40 2 - Reset Module - - -

Bytes values include all Commands and Data sent in the packet
- Means that there is no data or no response, do not insert data bytes

1Legacy Pull-up Command ‘@’ is still implemented for backward compatibility,

advised to use the new command on any new development.

B c2015 tlexol Pty Ltd

Yo

however

it is

Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Overview of Command Set

Identify Ether 10 24 Units
Function

Used to identify/find modules on the
network and send specific module
information (MAC address)

6 Bytes being the Modules’ MAC Address
2 Bytes being the Modules’ Firmware Version

Operation: This Operation is used to find modules on the network as the module
will respond to this command when broadcast. When this command is
received, the Module’s Information is sent back to the host, the module’s
IP Address can be obtained from the Source Address of the packet.

Write Port Value
Write Port A

ASCII
Code

Bytes Data Function

Port- Writes data to ports output lines. A bit value
A 2 of 1 sets the corresponding line high and a @
Value .
sets it low
The power up default value for this port is 0

Operation: This command affects any of the eight lines of Port A that are set as
outputs. The port value is written to the entire port with each of the
values bits affecting the corresponding I/0 line. To change a single I/O
line without affecting the others it is required to store the old value
of the port or read its current value before writing a new value with
only the corresponding bits changed. This command does not affect any
I/0 lines that are set as Inputs.

Write Port B

ASCII
Code

Bytes Data Function

Writes data to ports output lines. A bit value
Port- X . .
B 2 of 1 sets the corresponding line high and a ©
Value .
sets it low
The power up default value for this port is 0

Operation: Same operation as Write Port A Register but implemented on Port B
Write Port C

ASCII
Code

Bytes Data Function

Writes data to ports output lines. A bit
Port- . . .
C 2 value of 1 sets the corresponding line high and
Value .
a 0 sets it low
The power up default value for this port is 0

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Operation: Same operation as Write Port A Register but implemented on Port C

Read Port Value
Read Port A

ASCII Function
Code Bytes Data

Command

- -.-
1

Sends the Value of Port A back to the
ASCII
Bytes DER o] host
Code
Command
Repl
Py Port-Value

Operation: The Value of the 8 I/0 lines of Port A is read and sent back to the

host. Those pins that are set as outputs are read as though they were inputs and
their values sent back in the Port Value Byte.

Read Port B

Function
G Bytes Data
Code
Command eossmmm ——

Sent
1

ASCII Sends the Value of Port B back to the
Code Bytes host
Command
Repl TR S
Py Port-Value

Operation: The Value of the 8 I/0 lines of Port B is read and sent back to the
host. Those pins that are set as outputs are read as though they were inputs and
their values sent back in the Port Value Byte.

Read Port C

Function

Sends the Value of Port C back to the
host

Port-Value

Operation: The Value of the 8 I/0 lines of Port C is read and sent back to the

host. Those pins that are set as outputs are read as though they were inputs and
their values sent back in the Port Value Byte.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Write Port Direction Register

Write Port A Direction Register

ASCII
Code

Bytes Data Function

Writes data to port’s direction register.
Lines with a corresponding bit value of © are
set as outputs, lines with a bit value of 1
are set as inputs

The power up default for Direction is 255 setting all lines as inputs

1A 3 Direction

Operation: This command affects all eight lines of port A. The Direction value is
written to the entire port with each of the bits in the byte affecting the
corresponding I/0 line. To change a single I/0 line without affecting the others
it is necessary to store the old value of the port or read its current value
before writing a new value with only the corresponding bits changed. To set the
entire port as outputs use Direction = @ to set all as inputs use Direction = 255
to set 0, 1, 2 and 3 as inputs and 4, 5, 6 and 7 as outputs use Direction = 15.

Write Port B Direction Register

ASCII
Code

Bytes Data Function

Writes data to ports direction register.
Lines with a corresponding bit value of @ are
set as outputs, lines with a bit value of 1
are set as inputs

The power up default for Direction is 255 setting all lines as inputs

B 3 Direction

Operation: Same operation as Write Port A Direction Register but implemented on
Port B

Write Port C Direction Register

ASCII
Code

Bytes Data Function

Writes data to ports direction register.
Lines with a corresponding bit value of © are
set as outputs, lines with a bit value of 1
are set as inputs

The power up default for Direction is 255 setting all lines as inputs

IC 3 Direction

Operation: operation as Write Port A Direction Register but implemented on Port C

I 2015 clexol Pty Ltd o Revision 1.3

elexol Q

ETHER

1024 _TCP_DATASHEET

e

electronic solutions
Read Port Direction Register

Read Port A Direction Register

ASCII

Code Data

Bytes
Command

Sent

- ASCII

Bytes
Code

Data

Command
Reply Register-

Value

Function

Sends the Direction Register value
back to the host

Operation:
host.

Read Port B Direction Register

Command
Reply Register-

Value

The Direction Register of Port A is read and its value sent back to the

Function

Sends the Direction Register value
back to the host

Operation:
host.

Read Port C Direction Register

ASCII

Code Data

Bytes
Command

Sent
Ic

ASCII

Data
Code

Command
Reply

Register-
Value

The Direction Register of Port B is read and its value sent back to the

Function

Sends the Direction Register value
back to the host

Operation:
host.

The Direction Register of Port C is read and its value sent back to the

I 2015 clexol Pty Ltd

Revision 1.3

Yo

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Write Port Pull-up Register

Write Port A Pull Up Register

ASCII
Code

Bytes Data Function

Writes data to port’s direction register.
Lines with a corresponding bit value of 1 have

%A 3 Enable | their pull up resistors turned on, lines with
a bit value of © have their pull up resistors
turned off

The power up default for Enable is 0; all pull up resistors turned off

Operation: This command affects all eight lines of port A whose direction is set
as an input. The Enable Value is written to the entire port with each of the bits
in the byte affecting the corresponding I/O line. To change a single I/0 line’s
behaviour without affecting the others it is necessary to store the old value of
the register or read its current value before writing a new value with only the
corresponding bits changed. To set the entire port with pull up resistors turned
on use Enable = 255 or OxFF to turn all the pull up resistors off use Enable = @
or 0x00 to set @, 1, 2 and 3 as on and 4, 5, 6 and 7 as off use Enable = 15 or
OXOF.

Write Port B Pull Up Register

ASCII
Code

Bytes Data Function

Writes data to port’s direction register.
Lines with a corresponding bit value of 1 have

%B 3 Enable | their pull up resistors turned on, lines with
a bit value of © have their pull up resistors
turned off

The power up default for Enable is 0; all pull up resistors turned off

Operation: Same operation as Write Port A Pull up Register but implemented on Port
B

Write Port C Pull Up Register

ASCII
Code

Bytes Data Function

Writes data to port’s direction register.
Lines with a corresponding bit value of 1 have

%C 3 Enable | their pull up resistors turned on, lines with
a bit value of © have their pull up resistors
turned off

The power up default for Enable is 0; all pull up resistors turned off

Operation: Same operation as Write Port A Pull Up Register but implemented on Port
C

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions
Read Port Pull-up Register

Read Port A Pull Up Register

Function

Sends the Pull Up Register value back
to the host
Command
Reply Register-
Value

Operation: The Pull Up Register of Port A is read and its value sent back to the
host.

Read Port B Pull Up Register

Function

Command

Sends the Pull Up Register value back
to the host
Command
Reply Register-
Value

Operation: The Pull Up Register of Port B is read and its value sent back to the
host

Read Port C Pull Up Register

Function

Sends the Pull Up Register value back
to the host

Command
Reply Register-
Value

Operation: The Pull Up Register of Port C is read and its value sent back to the
host

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

High/Low Commands

Raise I0 Pin (High)

ASCII
Code

Bytes Data Function

IO Pin Raises the IO pin indicated by IO Pin Number
Number (Numbered © to 23)

Operation: This command Raises the Pin Value on the IO Pin indicated in IO Pin
Number. IO Pin Number is a number between © and 23 where Port A Pins correspond
to @ - 7, Port B Pins correspond to 8 - 15, and Port C Pins correspond to 16 - 23.
The corresponding IO Pin must be set to Output for this command to have effect.

Lower IO Pin (Low)

ASCII
Code

Bytes Data Function

IO Pin Lower the IO pin indicated by IO Pin Number
Number (Numbered 6 to 23)

Operation: This command Lowers the Pin Value on the IO Pin indicated in IO Pin
Number. IO Pin Number is a number between © and 23 where Port A Pins correspond
to @ - 7, Port B Pins correspond to 8 - 15, and Port C Pins correspond to 16 - 23.
The corresponding IO Pin must be set to Output for this command to have effect.

Read EEPROM

Function

Command

Sent
AddMSB AddLSB

The EEPROM data at AddMsB:AddLsB is
ASCII read and sent back to the host
Command Code

Reply AddMSB AddLSB
Data

Operation: The module will read the EEPROM memory at the specified address and
send a packet back to the host containing this data.

Note: The legacy command ‘R’, along with the original EEPROM addresses are still
supported by the Ether 1024 TCP however it is recommended that all new
applications use the new ‘r’ command.

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Write EEPROM

Function

AddMSB AddLSB The Data value is written to the EEPROM
Data address at AddvmsB:AddLSB

Operation: The module will write the EEPROM memory at the specified Address with
the data contained in the Data byte.

Special Conditions: The EEPROM cannot be written if the J1 pin is tied to GND.
Note: The legacy command ‘W’, along with the original EEPROM addresses are still

supported by the Ether I024 TCP however it is recommended that all new
applications use the new ‘w’ command.

Reset Module

ASCII Code Bytes Function

‘@ 2 - The Module Resets

Operation: The module reset operation causes all the ports to be set to all inputs
or as set up in the EEPROM and all EEPROM settings to be read and activated. When
reset command is sent to the unit a 1@ms delay should be allowed before sending
any other commands to the unit.

I 2015 clexol Pty Ltd o Revision 1.3

@ elexol

electronic solutions

Q

ETHER I024 TCP DATASHEET

Serial Communications Modes (Via I/0 Ports)

Serial Communications Modes include SPI Mode and I2C Mode. The Port Mode
is set as part of the Power-up Options in the Ether 1024 TCP Java Applet.
Once the Mode is set, all communications are done using the S Command as

set out below.

SEND SERIAL DATA ON PORT A

Command
Sent

Command
Reply
(SPI Mode)

Command
Reply
(I2C Mode)!

2 + #data
bytes +
data

2 + #tdata
bytes +
data

Return
data

Function

Sends out Serial* data on PORT A. The
number of data bytes is sent out first
followed by the data. The return data will
automatically be clocked in and sent back
in the command reply.

*Serial Data may be SPI or I2C, depending
on Port Mode

1

I2C Mode only returns data on Read Commands.

Operation: Sends out Serial data on PORTA. The command consists of SA which tells
the firmware that Serial data will be sent on PORTA, then the number of data bytes
to be sent out followed by the data bytes. Below are some examples of the commands

B c2015 tlexol Pty Ltd

o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

SEND SERIAL DATA ON PORT B

Function
Command
Sent
Command Sends out Serial* data on PORT B. The
Reply 2 + #data number of data bytes is sent out first

Return followed by the data. The return data will
data automatically be clocked in and sent back
data in the command reply.

(SPI Mode) SB bytes +

* Serial Data may be SPI or I2C, depending
on Port Mode

Command
Reply

(12C Mode)l Return

data

' I2C Mode only returns data on Read Commands.

Operation: Sends out Serial data on PORTB

SEND SERIAL DATA ON PORT C

Function
Command e #data |
Sent + ata
bytes +
data
Command Sends out Serial* data on PORT C. The

number of data bytes is sent out first

Return followed by the data. The return data will

data automatically be clocked in and sent back
in the command reply.

Reply
(SPI Mode)

* Serial Data may be SPI or I2C, depending
on Port Mode

Command

Reply 2 + #data
(I2C Mode)* bytes +
data

' 12C Mode only returns data on Read Commands.

Operation: Sends out Serial data on PORTC.

I 2015 clexol Pty Ltd o Revision 1.3

ETHER I024 TCP DATASHEET

@ elexol «

electronic solutions

Overview of SPI Mode

The SPI interface that is implemented on the Ether 1024 TCP is a very
basic SPI master device that allows 4 different modes. The SPI mode only
has the one clock speed which is mentioned below in the specifications.
The SPI interface can be used to communicate with A/D, GPIO Expander,

EEPROM chips to name a few.

connection of an SPI device to the Ether I024 TCP.

Shown in the diagram below is the typical

Connection diagram between Ether I024 TCP Port A and an SPI device

Bher I/O 24

F Device

Port AO

Port Al

Port A2

FoItAx

L
DI
DO
SCS

(usually active low)

Listed below are the SPI pin connections used by the Ether 1024 TCP on all

Ports.

e Port Bit @ is Serial Clock (SCL) and will be set as an output when

in SPI Mode

e Port Bit 1 is Serial Data Out (SDO) and will be set as an output

when in SPI Mode

e Port Bit 2 is Serial Data In (SDI) and will be set as an input when

in SPI Mode

e All other Port pins act as normal

e Any of the other pins can be used as SS or CS when SPI is used. CS
pins can be active high or active low depending on the setup used.

B c2015 tlexol Pty Ltd

Yo

Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

SENDING BYTES VIA SPI

To send out SPI data on Port A the command that needs to be sent out
requires an "SA" prefix followed by the number of bytes you want to send
followed by the data stream. To send out the following bytes OxFF OxAA
0x55 you would send the following "SA"™ + ©0x03 + OXFF + OxAA + Ox55

RECEIVING BYTES VIA SPI

Receiving bytes via SPI happens when the bytes are sent out, for every

byte that is clocked out, there is an incoming byte being received. The
number of bytes received is determined by the number of bytes that has

been sent out.

In order to receive the number of bytes that is expected from the SPI
device, Null bytes will have to be sent out. Sending out the Null bytes is
required to keep the SPI clock running so that the return data is clocked
out from the SPI slave device.

There are null bytes sent in the example image below, this can be seen in
the last two bytes which are sent (implemented with don't cares) and on
the input pin you will have the valid data from the device. The valid data
will be sent back in the command response packet.

Note: you may have to send out leading zero's and don't cares depending on
device you are communicating with. e.g. seven leading zero's then a
start bit as per the image below.

MCU latches data from AD
converter on rising edges of SCLK

+—
O i 020100 [Cont Car
-Z 101 Y T . Y ¥ ¥ Y 1 o |
Dour Hz e ee)(es) &7 es)(m) o)) e[}
j el NS S | SN S) SN S) W S S _—
Grgige[ofoofofaJo e] EFoe[ofodx]x]x]x] [x[x][x[x]x]x*]x]x]
sgmardesy 22 ?[2]7[2]2]2] [Z]2]2]7["fiafee[es]| [e7[e]es]=s]ma]ee]an]m0]
[1 | |
Data stored into MCU recsive Data stored into MCU receive Data stored into MCU receive

. B " register after ransmission of first ragister after transmission of ragister after transmission of last
#="Don'tCand Bts 5 e secand 8 hits & bits

Example image for SPI communications with the MCP3004/3008 using 8 bit
segments taken from the MCP3004./3008 datasheet.
(http://www.microchip.com)

I 2015 clexol Pty Ltd o Revision 1.3

http://www.microchip.com/

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

BASIC OVERVIEW OF SERIAL COMMUNICATIONS TO SPI ACCESSORY BOARDS

Listed below is a basic overview of the procedure that needs to be
followed in order to communicate with the board.

a1~ WN

7.
8.

. Configure the Port for SPI Mode using the Web-based Java

Application.

. Setup Port Values on Ether 1024 TCP for idle state on SPI Board

Lower the CS pin for chip communication

. Start SPI communication by sending start byte
. Send Control Byte or write command registers
. Send Null Bytes if response is required. This is done to keep the

SPI clock going or no responses will be clocked in
Raise the CS pin back to idle state.
Repeat from Step 3 for other commands.

The coding examples below go into more detail of what commands are issued
to the board. In this case the commands outlined are for the Analog board.

SETTING UP THE PORT ON THE ETHER 1024 TCP FOR SPI COMMUNICATIONS TO THE
ANALOG BOARD

Communication to the Analog board is via SPI from the port of Ether I024
TCP. However the port direction and pins will need to be setup before
communication can begin with the board. Below are the configurations that
need to be setup on the Ether 1024 TCP for the analog board.

I/0 24 DESCRIPTION
COMMAND

A 0x79 Set CS for A/D and D/A to idle state

A 0x71 Lower CS for A/D and D/A to idle state
A 0x78 Lower CS for D/A and A/D to idle state
A 0x38 Lower CS for D/A and set LDAC to high
A 0x68 Lower LDAC

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

SPI SPECIFICATIONS

The table below outlines the specifications of the SPI mode implemented
on the Ether 1024 TCP.

SPI waveforms

(== [

t

DO X X
DI X X

SPI Byte timing

-t

X
o X X:

Symbol | Parameter Min | Max | Units
t1 Time to First 87us | 2 mS
clock after CS
has been lowered
Max value is
with CS in
separate packet
to SPI data

t2 Time to raise CS |42us |3.2 | mS
after last clock
tp Clock Period - 3 us
tb Time between 45 us
start of bytes
td Time Between 22 us
data bytes

I 2015 clexol Pty Ltd o Revision 1.3

@ elexol «

electronic solutions

Overview of I12C Mode

ETHER I024 TCP DATASHEET

The I’C interface that is implemented on the Ether 1024 TCP is a very
basic I°C master. The I°C mode only has the one clock speed which is
mentioned below in the specifications. The I’C interface can be used to
communicate with A/D, GPIO Expander, EEPROM chips to name a few. Shown in
the diagram below is the typical connection of an I°C device to the Ether

1024 TCP.

Connection diagram between Ether 1024 TCP Port A and an I’C device

Bher /0O 24

Port AO
Port Al

I2C Device

\ 4

L

A

DA

\

Listed below is the I°C pin connections used by the Ether 1024 TCP on all

Ports.

e Port Bit @ is Serial Clock (SCL) and will be set as an output when

in I’*C Mode

e Port Bit 1 is Serial Data (SDA)
e All other Port pins act as normal

e Any of the other pins can be used for other functions when I°C is

used.

I2C SPECIFICATIONS

The table below outlines the specifications of the I’C mode implemented on

the Ether I024 TCP.

Symbol | Parameter Min | Max | Units
tl us mS
t2 mS
tp Clock Period 60 us
tb us
td us
I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

AutoScan Configuration

The AutoScan mode will allow the module to originate communication with a
remote device or another Ether 1024 module. This mode is very useful as
it allows your software the freedom to not have to poll the module to
check the state of the inputs.

An overview of the AutoScan settings can be found in the AutoScan section
of the Web Interface Chapter above.

Basic Functionality

Once AutoScan is configured, any input state changes on the configured
port will automatically be sent to a host or another Ether 1024 module.

The AutoScan response format is shown below:

AutoScan
Response

Bytes

Port is the module Port in which the state had
* Port Value 3 changed
Value is the new value of the port

The AutoScan packet is prefixed with a “*’ to enable it to be
differentiated from a normal read port return. For example, if Port A is
configured for AutoScan, any input pin changes will be sent in the form:

*A[New port value]

Tips and tricks

e Auto scan will only work with values that are set to Inputs

e Don’t leave floating input pins when using auto scan as the pins
will change state and constantly send data. Tie them to a know state
by using the in-built Pull-ups, or set them as outputs if not being
used.

e The Auto scan packet sent back from the Ether I/0 contains 3 bytes
‘*¥> ‘port Designator’ ‘Hex Port Value’ e.g. *A@ data in packet UDP
packet will be 2a 41 00

e Be sure to set the scan period and scan count appropriately for your
application

e Use a program called Ethereal or WireShark to debug the packets
being sent back and forth from the PC to the Ether I/O 24 and vice
versa. (www.ethereal.com www.wireshark.org)

e Know what data is being sent back with the various commands sent.
E.g. Sending 1024 will return 12 bytes, Read command 2 bytes, etc

I 2015 clexol Pty Ltd o Revision 1.3

http://www.ethereal.com/
http://www.wireshark.org/

@ elexol «

ETHER I024 TCP DATASHEET

electronic solutions

EEPROM Configuration

The EEPROM on the Ether 1024 TCP is used to store the board’s Serial
number and other critical factory settings as well user settings for
the module and there is even a spare area where you can store your own
data to be kept by the module, even when the module loses power.

The EEPROM on the Ether 1024 TCP is used to store the configuration
settings for the board.

EE EE
Function Function
Address Address
0 - 25 Reserved (Unwritable)

26 DHCP Enable 27 Fixed IP Address Byte 1
28 Fixed IP Address Byte 2 29 Fixed IP Address Byte 3
30 Fixed IP Address Byte 4 31 Subnet Mask Byte 1

32 Subnet Mask Byte 2 33 Subnet Mask Byte 3

34 Subnet Mask Byte 4 35 Gateway IP Byte 1

36 Gateway IP Byte 2 37 Gateway IP Byte 3

38 Gateway IP Byte 4 39 Command Port LSB

40 Command Port MSB 41 TCP Server Timeout LSB
42 TCP Server Timeout BSB 43 AutoScan Enabled -

44 AutoScan Port A Mask 45 AutoScan Port B Mask
46 AutoScan Port C Mask 47 AutoScan Remote Port LSB
48 AutoScan Remote Port MSB 49 AutoScan Remote IP Byte 1
50 AutoScan Remote IP Byte 2 51 AutoScan Remote IP Byte 3
52 AutoScan Remote IP Byte 4 53 AutoScan Filter Count
54 AutoScan Period LSB 55 AutoScan Period MSB

56 Power-up Values Enabled 57 Power-up Port A Value
58 Power-up Port B Value 59 Power-up Port C Value
60 Power-up Port A Direction 61 Power-up Port B Direction
62 Power-up Port C Direction 63 Power-up Port A Pull-ups
64 Power-up Port B Pull-ups 65 Power-up Port C Pull-ups
66 Port A Mode 67 Port B Mode

68 Port C Mode 69 Port A SPI Mode

70 Port B SPI Mode 71 Port C SPI Mode
96 - Custom Display Line 1 (16 Custom Display Line 2 (16
111 Bytes) H2 - 17 Bytes)

! Autoscan Enable: Setting this address to @x@1 will enable Autoscan in UDP mode.

Setting it to 0x20 will enable Autoscan in TCP mode

B c2015 tlexol Pty Ltd

o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Coding Examples

The example code has been written in Visual C# Express and are available
for download from our website www.elexol.com

TCP INTERFACE EXAMPLES

Opening TCP Port and Connecting

//
//TCP Connect function opens TCP Connection to the device
//
private Boolean TCPConnect()

{

if (client == null)
{

client = new TcpClient();

//
//Define device PORT as 2424
//
_devicePort = 2424;

//
//Define IP address that is to be used from textbox
//
_devicelP = IPAddress.Parse(txtlPAddress.Text);

//

//Set up IPEndpoint of Ether 1024 that you want to talk with

//

IPEndPoint serverEndPoint = new IPEndPoint(_devicelP,
_devicePort);

//
//Try and connect with Ether 1024
//
try
{

client.Connect(serverEndPoint); //Connect

TestTextBox.AppendText(''\r\n" + "~~~" + "\r\n");

TestTextBox.AppendText(""TCP Client Connected to ™ +
_devicelP + "\r\n");

client_NoDelay = true;

catch (SocketException)

// Connection Failed
return false;

}

return true;

else //1f not connecting

{
try

{
client.Close();
client = null;
TestTextBox.AppendText(""TCP Client Disconnected”™ + "\r\n');

3
catch (SocketException)
// Dis-connection Failed

}

return false;

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Closing TCP Connection

//
//TCP Disconnect function closes port
//
private void TCPDisconnect()
{
client_Close(Q);
client = null;
TestTextBox.AppendText(""TCP Client Disconnected”™ + "\r\n');
¥
Sending TCP Commands

SETTING PORT DIRECTION REGISTER AND PORT VALUE

//
//TCP Send Direction function sends command to device to set the
//Port Direction of PORT A to all output

//
private void TCPSendDirection_Click(object sender, EventArgs e)

{

//
//0pen TCP Connection
//
it (JTCPConnect())

return; //will kick out if not connected successfully

//
//Define variables that are to be used in routine
//
NetworkStream clientStream = client.GetStream();
byte[] outBuffer = new byte[16];
byte[] inBuffer = new byte[16];

//
//Send out Port Direction Command to the unit
//
outBuffer[0]

(byte)*"1"; //Direction Command

outBuffer[1] (byte)"A"; //Port

outBuffer[2] (byte)0x00; //Value to be written to port direction register
clientStream._Write(outBuffer, 0, 3);

clientStream.Flush(); //Send out TCP packet

//
//Send out Port Command to the change value on Port
//
outBuffer[0] = (byte)"A";
outBuffer[1] = (byte)0x55;
clientStream.Write(outBuffer, 0, 2);
clientStream.Flush(Q);

//
//Disconnect TCP connection
//
TCPDisconnect();

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

READING PORT VALUE

//
//TCP Read Port function sends the command to the device,
//to read the Port and the Value on the Port

//
private void TCPReadPort_Click(object sender, EventArgs e)
{

//

//Define the Return Buffer for incoming data

//

byte[] ReturnDataBuffer = new byte[2];

//

//0pen TCP Connection

//

if (ITCPConnect())

return; //will Kick out if not connected successfully

//

//Define variables that are to be used in routine

//

NetworkStream clientStream = client.GetStream();
byte[] outBuffer = new byte[16];
byte[] inBuffer = new byte[16];

//
//Send out Port Read Command to the unit
//
outBuffer[0] = (byte)-"a“;
clientStream.Write(outBuffer, 0, 1);
clientStream.Flush(); //Send out Command

//
//1mplementation of Reading Port with Blocking
//Function ReadPortValue only returns 2 bytes
//
ReturnDataBuffer = ReadPortValue(clientStream);

//
//Display the Port Value in the TextBox provided
//
TestTextBox.AppendText(*'‘Read Port " +
System.Text_ASCIIEncoding.ASCII1._GetString(ReturnDataBuffer,0,1) + ' Ox"
+ ReturnDataBuffer[1].ToString("'X2") + "\r\n");
TestTextBox.AppendText(''\r\n"");

//
//Disconnect TCP connection
//
TCPDisconnect();

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

//
//TCP Read PortValue function Reads the icoming datastream from the device,
//the data returned is the Port and the Value

//
private byte[] ReadPortValue(NetworkStream clientStream)

//
// Define variables that are to be used in routine
//
byte[] inBuffer = new byte[2];
byte inBufferCount = 0;

System.Threading.Thread.Sleep(100); //wait

//

// Read 2 bytes back from stream (Port Read Response)
//

inBufferCount = 0;

do

inBuffer[inBufferCount++] = (byte)clientStream.ReadByte();
} while (clientStream.DataAvailable);

//
// Return the data that has been read back from Device
// Should be Port and the Value

//
return inBuffer;

}

Receiving TCP Command Responses

TCP SERVER APPLICATION THAT HANDLES ALL INCOMING TCP TRAFFIC.

//
// Form_Load Method: Instantiate and start the listening thread
//
private void Forml_Load(object sender, EventArgs e)

this.listenThread = new Thread(new ThreadStart(ListenForClients));
this_listenThread.Start();
by
//
// ListenForClient() : This method runs in the listening thread.
//7 1t will loop indefinately waiting for a TCP Connection.

//
private void ListenForClients()
{
try
this._tcpListener.Start();
3
catch
// Thread did not start.
}
while (true)
{
//
// Blocks until a client has connected to the server
//
TcpClient client = this.tcpListener._AcceptTcpClient();
System.Diagnostics.Debug.WriteLine("'Client Connected');
//
// Create a thread to handle communication with connected client
//
Thread clientThread =
new Thread(new ParameterizedThreadStart(HandleClientComm));
clientThread.Start(client);
3
3

I 2015 clexol Pty Ltd o Revision 1.3

e

elexol Q

ETHER I024 TCP DATASHEET

electronic solutions

//
//
//
//
//

HandelClientComm()

This method runs in the client thread.

It will handle data coming from the client and loop until
the client disconnects.

//

private void HandleClientComm(object client)

{

TcpClient tepClient = (TcpClient)client;
NetworkStream clientStream = tcpClient.GetStream();

byte[] message = new byte[4096];
int bytesRead;

while (true)

{

bytesRead = 0;

try
{
//
// Blocks until a client sends a message
//
bytesRead = clientStream._Read(message, 0, 4096);
catch
{
System.Diagnostics.Debug.WriteLine("'catch™);
//
// A socket error has occured
//
break;
3

if (bytesRead == 0)

}

// The client has disconnected from the server

System.Diagnostics.Debug.WriteLine(""Client Disconnected™);
break;

//

// Message has successfully been received

//

ASCIIEncoding encoder = new ASCIIEncodingQ);

System.Diagnostics.Debug.WriteLine(encoder.GetString(message, O,

bytesRead));

3
tepClient.Close();

I 2015 clexol Pty Ltd o

Revision 1.3

elexol Q

electronic solutions

ETHER I024 TCP DATASHEET

e

UDP INTERFACE EXAMPLES

Sending UDP Commands

BROADCAST 1024

Shown below is example code for a button
“1024” on port 2424

(Ether_Scan) that broadcasts

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

//
// Declare additional system-defined namespaces used by UDPClient
//
using System.Net.Sockets;
using System.Net;

namespace Etherl024example

{
public partial class Forml : Form
{
//
// Define variables that will be used throughout the code
//
public UdpClient udpClient = new UdpClient(2424);
public byte[] sendBytes;
public Forml()
{
InitializeComponent();
3
private void Ether_Scan_Click(object sender, EventArgs e)
{
//
// Send out 1024 via broadcast(255.255.255.255) on port 2424
//
//
// Fill sendBytes buffer with "1024"
//
sendBytes = Encoding.ASCII.GetBytes("'1024™);
//
// Broadcast UDP packet with 1024 on port 2424
// using the udpClient.send
//
udpClient.Send(sendBytes, //buffer
sendBytes.Length, //buffer length
"'255.255.255.255", //destination IP
2424); //destination Port
//
// ALl units will respond with 1024
// + 6 byte MAC address + Version Number
//
3
3
¥

B c2015 tlexol Pty Ltd

Yo

Revision 1.3

elexol Q

ETHER I024 TCP DATASHEET

e

electronic solutions

SETTING PORT DIRECTION REGISTERS AND PORT VALUES

The example code below shows the button code for setting the Port
Direction register and the port values for PORT A on the Ether 1024 TCP.
The ‘A’ can be replaced with ‘B’ or €C’ depending on which port is being

used.

SETTING PORT DIRECTION REGISTERS

private void Port_Direction_Click(object sender, EventArgs e)

{
//
// Declare buffer variable
//
byte[] buffer = new byte[5];
//
// Assign buffer values for command *"!" + "A" + port value
//
buffer[0] = Convert.ToByte("!"); //"I"
buffer[1] = Convert.ToByte("A®);//"A"
buffer[2] = 0x64; //"0x48"
//
// Send out Command (!'A 0x64) to 10.10.10.10 on port 2424
//
udpClient.Send(buffer, //buffer
3, //buffer length
""10.10.10.10", //Destination IP
2424); //Destination Port
3

SETTING PORT VALUES

private void Port_Value_Click(object sender, EventArgs e)

{
//
// Declare buffer variable
//
byte[] buffer = new byte[5];
//
// Assign buffer values for command “A® + port value
//
buffer[0] = Convert.ToByte("A®);//"A"
buffer[1] = OxFF; //"OxFF"
//
// Send out Command (A OxFF) to 10.10.10.10 on port 2424
//
udpClient.Send(buffer, // buffer
2, // buffer length
"10.10.10.10", // Destination IP
2424); // Destination Port
}

B c2015 tlexol Pty Ltd

Revision 1.3

Yo

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Receiving UDP Command Responses

UDP LISTENER

This example program will broadcast I024 across the network on start up
and list all Ether 1024°’s that respond to the command in a drop down combo
box.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

//
// Declare additional system-defined namespaces used by UDPClient
//
using System.Net.Sockets;
using System.Net;

namespace UDPListener

{
public partial class Forml : Form
{
//
// Define variables that will be used throughout the code
//

public UdpClient udpClient = new UdpClient(2424);
public byte[] sendBytes;

public byte[] data = new byte[1024];

string PCIPAddress;

public string strHostName;

string ReturnlPAddress;

List<IPEndPoint> IPList = new List<IPEndPoint>();
public int DeviceNo, list;

public IPEndPoint EtherlP;

//
// The thread that will manage the data back from the board
//
private System.Threading.Thread thdUDPReciever;

//
// This Subroutine is to handle all the UDP return data
// recieved from the thread UDPReciever

//
public delegate void ReturnUDPDataCal lback(byte[] text, IPEndPoint IP);

public Form1()
{

}

private void Forml_Load(object sender, EventArgs e)

{

InitializeComponent();

//
// Declare and start UDP recieve Thread
//
thdUDPReciever = new System.Threading.Thread(new

System.Threading.ThreadStart(RecieveThread));
thdUDPReciever.Start();

//

//Find out PC IP address as UDP Recieve thread

//recieves all UDP packets

//

strHostName = System.Net.Dns.GetHostName();

PCIPAddress =
System_Net.Dns.GetHostEntry(strHostName) .AddressList[0] -ToString();

I 2015 clexol Pty Ltd o Revision 1.3

elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

public void RecieveThread()

while (true)
{

//

//Declare RemotelPEndPoint

//where RemotlPEndPoint is the any IP address

//and Port Number of the incoming UDP packet

//

System.Net. IPEndPoint RemotelpEndPoint = new
System.Net. IPEndPoint(System._Net. IPAddress.Any, 0);

//

//1n remotelPendpoint, the IP address can be changed from any specific
//1P address, and the Port, which is 0 in the above line, can be changed

//to a specific port number.
//

//
//Declare other variables used
//
byte[] receiveBytes;
string returnData;

//
//Receive incoming UDP Packet
//
receiveBytes = udpClient.Receive(ref RemotelpEndPoint);

returnData = System.Text.Encoding.ASCII.GetString(receiveBytes);

//
// Test to see if there is anything to recieve
//
if (returnData.Length = 0)
{

//
//Filter data by IP address. If from host PC, then ignore
//else accept incoming data

//
if ((PCIPAddress == RemotelpEndPoint.Address.ToString()))

//ignore any data sent by host PC
3

else

{
if (ReturnlPAddress != RemotelpEndPoint._Address.ToString())

{

//
// Setup list of IP address that have responded
//
IPList.Insert(list, RemotelpEndPoint);
list = list + 1;

}

ReturnlPAddress = RemotelpEndPoint.Address.ToString();

//

//Return Data that was recieved from Ether 1024 as well as IP address

//
ReturnUDPData(receiveBytes, RemotelpEndPoint);

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

public void ReturnUDPData(byte[] UDPData, IPEndPoint RemotelP)
{

//
//Declare Variables
//
string MacString;

string VersionNumber;

//
//if 12 bytes were recieved in UDP Packet from the device
//then we have recived 1024 + MAC +Version

//

if ((UDPData.Length == 12))

if (this.comboBoxl. InvokeRequired)

{

//
//Need to invoke as the combobox and UDP reciever
//1is operating on different threads

//
ReturnUDPDataCal lback d = new ReturnUDPDataCal Iback(ReturnUDPData) ;
this.comboBox1. Invoke(d, new object[] { UDPData, RemotelP });

else

//
//Build up MAC string from the UDP data recieved
//
MacString
MacString
MacString
MacString
MacString
MacString
MacString

MAC:" + Convert.ToString(UDPData[4], 16) + ":*;
MacString Convert.ToString(UDPData[5], 16) + ":*
MacString Convert.ToString(UDPData[6], 16) + ":'';
MacString + Convert.ToString(UDPData[7], 16) + ":*;
MacString + Convert.ToString(UDPData[8], 16) + ":';
MacString + Convert.ToString(UDPData[9], 16);
MacString.ToUpper();

+
+
+
+

//
//Build up Version Number string from the UDP data recieved
//
VersionNumber = Convert.ToString(UDPData[10], 16) + ".";

VersionNumber = VersionNumber + Convert.ToString(UDPData[11], 16);

//
//Add Ether IP address & MAC Address to combo box
//
this.comboBox1. Items.Add(RemotelP._Address.ToString()

+ MacString + * V" + VersionNumber);
this.comboBoxl.Selectedlndex = comboBoxl.ltems.Count - 1;

DeviceNo = comboBox1.SelectedIndex;
EtherIP = IPList[DeviceNo];

I 2015 clexol Pty Ltd o Revision 1.3

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

private void Ether_Scan_Click(object sender, EventArgs e)

{

//

//Send out 1024 via broadcast(255.255.255.255) on port 2424

//

//

//fill sendBytes buffer with "1024"

//

sendBytes = Encoding.ASCII.GetBytes(*'1024);

//

//Broadcast UDP packet with 1024 on port 2424

//using the udpClient.send

//

udpClient.Send(sendBytes, //buffer
sendBytes.Length, //buffer length
"'255.255.255.255", //destination IP
2424); //destination Port

//

//A11 units will respond with 1024

//+ 6 byte MAC address + Version Number

//

}
}
}

READ PORT DIRECTION REGISTERS AND PORT VALUES

READ PORT A DIRECTION REGISTER

private void Read DirA_Click(object sender, EventArgs e)

{
//
//Command data
//
data[0] = Convert.ToByte("!");//"1"
data[1] = Convert.ToByte("a");//"a"
//
//Sending out Command Data
//
udpClient.Send(data, 2, EtherlP);
//
//we expect a response of 3 bytes back from unit
/771" + A" + direction value of port A
//this data will be captured
//and then dealt with in ReturnUDPData
//
3

READ PORT A VALUE REGISTER

private void Read_PORTA_Click(object sender, EventArgs e)

{
//
//Command data
//
data[0] = Convert.ToByte("a");//"a"
//
//Sending out Command Data
//
udpClient.Send(data, 1, EtherlP);
//
//we expect a response of 2 bytes back from unit
// A" + port value of port A
//this data will be captured
//and then dealt with in ReturnUDPData
//
}

I 2015 clexol Pty Ltd o Revision 1.3

e

elexol Q

ETHER I024 TCP DATASHEET

electronic solutions

Absolute Maximum Ratings

Warning! Exceeding these ratings may cause irreparable damage to the unit.

Parameter

Absolute Maximum Conditions

Storage Temperature

-65°C to +150°C

Ambient Temperature (Power Applied)

-40°C to + 75°C

Humidity Range

0 to 85 %RH

+7v to +35.00v DC
-0.6v to +5.6v

Power Supply Input Voltage
DC Input Voltage - Port Inputs

DC Input Current - per IO Pin 25mA
DC Output Current - per IO Pin 25mA
DC Input Current - Total per Port 75mA
DC Output Current - Total per Port 62.5mA
DC Characteristics (Temperature = 25°C, Power = 24VDC)
Parameter Conditions Min | Typ | Max | Units

Power Consumption 1.1 W
Logic Low

Schmitt Trigger 0 0.75 Vv
Logic High

Schmitt Trigger 4.25 5.0 \Y
Input Leakage Current Vin = @V or 5V -3.0 +3.0 pA
Pull-Up Current 200 | 400 | 600 pA
Output High Voltage Load = 14mA 4.3 V
Output Low Voltage Load = 25mA 0.6 V
Packet Timing Characteristics
Due to the characteristics of different networks the expected time to
receive and transmit packets to the unit will depend on the individual
network configurations and the applications sending and receiving
commands.

Parameter Conditions Min Typ Max Units
Port Write Speed | Multiple writes within one packet 170 pS
Port Read Speed Multiple reads within one packet 32 uS

Autoscan Minimum Rate at which autoscan 10 mS

can pick up a pin toggle

Further Reading

Information and coding examples for the Ether I024 TCP can be found on our
website at www.elexol.com

Revision 1.3

I 2015 clexol Pty Ltd o

http://www.elexol.com/

e elexol Q ETHER 1024 TCP DATASHEET

electronic solutions

Technical Support

For any questions relating to the Ether 1024 TCP or if we can assist you
with integrating the Ether I024 TCP into your own equipment please contact
us by email at support@elexol.com

Document Revision History

e Ether I024 TCP Datasheet Revision 1 - Initial document created
e Revision 1.1 - Added AutoScan Section, Revised EEPROM Commands
e Revision 1.2 - Corrected Absolute maximum Ratings

e Revision 1.3 - Product name changed to Ether 1024 TCP.

Product Use Limitations, Warranty and Quality Statement

This product is not designed, intended, or recommended for use in systems
intended to support or sustain life, or for any other application in which
the failure of the product could create a situation where personal injury
or death may occur and should not be used for those applications.

The Ether I024 TCP is warranted to be free from manufacture defects for a
period of 12 months from the date of purchase. Subjecting the device to
conditions beyond the Absolute Maximum Ratings listed in this document
will invalidate this warranty. As the Ether I024 TCP is a static
sensitive device, anti static procedures should be used in its handling.

All Ether I024 TCP units are tested during manufacture and are despatched
free of defects.

Elexol is committed to providing products of the highest quality. Should
you experience any product quality issues with this product please contact
our quality assurance manager at the above address.

Disclaimer

This product and its documentation are provided as-is and no warranty is
made or implied as to their suitability for any particular purpose.
Elexol Pty Ltd will not accept any claim for damages arising from the use
of this product or its documentation. This document provides information
on our product and all efforts are made to ensure the accuracy of the
information contained within. The specifications of the product are
subject to change and continual improvement without notification.

Other than the extent permitted by law and subject to the Trade Practice
Act, all and any liability for consequential loss or damage arising from

I 2015 clexol Pty Ltd o Revision 1.3

mailto:support@elexol.com

@ elexol « ETHER 1024 TCP DATASHEET

electronic solutions

an Elexol Ether I024 TCP module is hereby limited, at discretion of Elexol
Pty Ltd, to replacement or repair.

I 2015 clexol Pty Ltd o Revision 1.3

	Module Features
	Layout and Mechanicals
	Pinouts and Board Connections
	LED Indicators (Network Link/ACT and Valid Command)
	Java Programming Interface
	Log-in Tab
	Test Controls
	Power-up Options
	AutoScan
	Port / Static IP / Timeout

	Command Interface (Via TCP and UDP Packets)
	Command Summary
	Command Quick Reference
	Overview of Command Set
	Identify Ether IO 24 Units
	Write Port Value
	Read Port Value
	Write Port Direction Register
	Read Port Direction Register
	Write Port Pull-up Register
	Read Port Pull-up Register
	High/Low Commands
	Read EEPROM
	Write EEPROM
	Reset Module
	Serial Communications Modes (Via I/O Ports)
	Overview of SPI Mode
	Overview of I2C Mode

	AutoScan Configuration
	Basic Functionality
	Tips and tricks

	EEPROM Configuration
	Coding Examples
	Opening TCP Port and Connecting
	Closing TCP Connection
	Sending TCP Commands
	Receiving TCP Command Responses
	Sending UDP Commands
	Receiving UDP Command Responses

	Absolute Maximum Ratings
	Packet Timing Characteristics

	Further Reading
	Technical Support
	Document Revision History
	Product Use Limitations, Warranty and Quality Statement
	Disclaimer

